CSS Jump-Start

About this document

This document intends to give software integrators a jump-start in using CSS, clearly the most sophisticated spooler software available. It shows only a very small subset of all the features of CSS and is no substitute for the manual, which remains the sole and only complete product reference.

General

CSS is a very technical product. It is mainly sold to software companies, who integrate the spooler into their software packages. Some knowledge of Unix and an editor are required for initial setup. The best source of information is the online manual, which can be downloaded at http://www.unitec.ch. Of special interest are the sections Installation and Configuration. Please read carefully.

Installation

Copy the attached file css.tzr to your Unix system. Then enter

1.
mv css.tzr css.tar.Z
2.
uncompress css.tar
3.
tar xvf css.tar
4.
./setup
All this has to happen as user root, preferably in the /tmp directory.

During setup, you will be prompted to enter your activation key. Please enter the branding information exactly as received from Unitec.

Minimal Configuration

In order to use CSS, you must define at least one printer. This is done in the file /etc/css.devices. A very simple entry may look like this:

1|Printer 1:as:dv=/dev/lp:

This defines a printer attached to the device /dev/lp and enables the printer for automatic selection.

Starting with release 3.30 you can define network printers like:

2|Printer 2:as:rpm=rlpd:rph=128.41.1.11:rpq=MPS_0d242f_TEXT:

where rph defines the IP address of the printer and rpq the print server queue name.

To define forms, you can edit the file /etc/css.forms. There are already some forms predefined with form 'A' as the default.

Once the definition files have been changed, they need to be compiled with the csa
administrator utility, e.g. /etc/csa -df
User Interface

The user interface program css(U) can be started in several languages. To see English screens, please use css -Le. As an alternative, you can define a line

LANGUAGE=english

in /etc/css.default. To see a short description, any command can be called with the -help option. For more information about default configuration, please consult the manual at CSS.DEFAULT(C).
If the screens of css(U) look strange, you may want to try different TERM settings. CSS uses /etc/termcap for easy modification. On Sun systems TERM settings of ansi or vt100 should do the job. For improvement you may want to set the codes for line graphics as explained in SETUP(I).

Bourne Shell:
TERM=ansi

export TERM

C Shell:
setenv TERM ansi
CSS Printer Control

To transparently pass escape codes to a printer, you can define a device as to operate in binary mode (bm). Alternatively you can spool a single report in binary mode on normal devices with the -B option of LPR(U). It is important to know, that normal CSS devices use a hypothetical command set from ESC,1 to ESC,127 (two bytes 0x2701 .. 0x277f). It is up to you to define the translations to the 'real' escape codes required by the printer models in use. The capabilities to do this are e1 .. e127 (see CSS.DEVICES(C)). Whenever a program sends an escape code, say ESC,7 and the target printer has no e7 entry, the two bytes (0x2707) are NOT passed to the device (CSS is assuming, that the target device does not support this feature).

If your software is written to produce output on a particular printer model, you may want to use the translation feature of CSS instead of e1 .. e127 to achieve the hypothetical printer model axiom. Let’s say your software is written to serve an old FX-80 printer. To start italic printing the program sends the sequence ESC ‘5’ (0x2735). The standard CSS printer model would require ESC,11 (0x270B) to achieve the same thing, but changing all the programs is not an option for you. The obvious solution is to translate the output of your program to the control sequence of the target printer model:

For a HP printer you would define
...
:tr =\E5=\E(s1S:# italic printing on:\
...

For the FX-80 printer your definition looks like

...
:tr =\E5=\E5:# italic printing on:\
...

And for a printer model not supporting this feature, set

...
:tr =\E5=:# ignore italic printing on:\
...

If you want to see what CSS sends to a printer, you can define a device (in /etc/css.devices) with e.g.

dv=/tmp/output

This will direct output to a disk file and you can inspect it with a dump utility like

od -cx

Please note however, that this file is overwritten by each print job. But it helps sometimes to debug you device definitions. Again, whenever you make any changes to /etc/css.devices and/or /etc/css.forms you will have to compile these files with

/etc/csa –d or /etc/csa –f or both /etc/csa -df
for the changes to become active.

CSS Device Definitions

This is by far the most complex area in CSS customization and is sometimes hard to learn. Again, please read the Configuration section of the manual carefully. Most likely you will need to read it at least two times to get an idea of the numerous possibilities. The following examples go beyond the scope of this document, but are included to give you some inspiration.

1) Macro Download

Assume you want to create the two different forms F1 and F2 on plain A4 paper by downloading form definition utility fdu(U) macros to a laser printer:

...
:bor <f1>=/usr/css/hpgl5/f1.mac:#Download macro:\
:bor <f2>=/usr/css/hpgl5/f2.mac:#Download macro:\

or:

:dt=hpgl5:# printer type:\
:bor <f1>=/usr/css/%T/%F.mac:\
:bor <f2>=/usr/css/%T/%F.mac:\

...
:bor <f1>=\E&f1Y\E&f4X:#Set macro ID 1, enable overlay:\
:bor <f2>=\E&f1Y\E&f4X:#Set macro ID 1, enable overlay:

Since output to form F1 may be printed even if form F2 is mounted on the device and vice versa (both forms use the same physical paper), the user may be freed of the need to perform a form change by

:map=f1,f2:

The command 'lpr.css -f f1 file' prints the file with the overlay macro defined for form F1. An additional method to set CSS options is furnished by a feature called Document Embedded Control. It allows to set any lpr(U) option on the first line of a print file, e.g.:

++CSS++ -f f1

2) By the use of flags (Boolean variables) and the ‘begin of line’ event bol, it is e.g. possible to emulate old style computer paper (alternate white and grey shaded lines) dynamically controlled by the program. In this example, we assume the character sequence !!Z1 as the command to start the emulation and !!Z0 to resume to normal mode:

...
:tr -s Z=!!Z1=:#Set condition flag Z and discard '!!Z1':\
:tr -c Z=!!Z0=:#Clear condition flag Z and discard '!!Z0':\
:#If flag Z is true and the line number is even, draw grey rectangle:\
:bol /Z (e)=\E...:
...

Some commonly asked questions

Q:
After calling css.lpr to spool a file it is not printed although the device is ready.

A:
Start the user interface program and select menu 2. Printer control. Now check if the printer status is ready. If the status is 'on hold', select the printer and activate it.

Q:
I activated the printer, but still nothing happens.

A:
Select menu 3. Report queue in the css(U) user interface program. In the column 'Frm' check the form name of the report. Now go back to menu 1. Form change and check if one of your printers has the required form mounted. If not, make sure, that the proper paper is in the printer and tell this fact to CSS. To do so, select the printer and the form identifier.

Q:
Before printing my file, I want to verify it in the css(U) user interface program, i.e. I do not want my file to be printed immediately.

A:
Call css.lpr with the -H option. This will keep the report in the queue, until it is released manually.

